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Abstract 

We consider the change-point problem for the marginal distribution function of a strictly 
stationary time series. Asymptotic behavior of Kolmogorov-Smirnov type tests and estimators of 
the change point is studied under the null hypothesis and converging alternatives. The discussion 
is based on a general empirical process' approach which enables a unified treatment of both 
short-memory (weakly dependent) and long-memory time series. In particular, the case of long- 
memory moving-average process Xj = ~.~< j bj s~ is studied, using the recent results of Giraitis 
and Surgailis (1994). 
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test 

! .  Introduction 

Detection of  changes in the distribution parameters o f  a random sequence is important 

for many applications; see e.g. the recent books Brodsky and Darkhovsky (1993) and 

Bassevil le and Nikiforov (1993) and the references therein. 

This paper deals with nonparametric situation, which usually arises when the form 

of  the distribution is unknown a priori. Like many statistical problems,  the change- 

point problem allows two different formulations - -  a posteriori  and sequential, also 

called off-line and on-line, respectively. In the first case, the decision about stochastic 

homogenei ty of  a random sequence (the abscence o f  change)  is made after observing 

a sample o f  a fixed length. In the sequential formulation, the decision must be made 

'on l ine '  with the observations. 
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The change-point problem (both a posteriori and sequential approaches) is well- 
studied in the case of independent observations (see e.g. CsSrg6 and Horvfith, 1988; 
Brodsky and Darkhovsky, 1993), in which case one is interested in the detection 
of change of the cumulative distribution function. A natural statistic for testing the 
null-hypothesis is a Kolmogorov-Smirnov (K-S)-type statistic, used by several authors 
(Picard, 1985; Deshayes and Picard, 1986; Hawkins, 1988; Leipus, 1988; Szyszkowicz, 
1994; Cs6rg6 and Szyszkowicz, 1994). 

In this paper, we develop a general asymptotic approach to the change -point prob- 
lem of the marginal distribution function F(x) = P{Xt ~<x} for (dependent) stationary 
observations X,., i E Z, based on the asymptotics of the two-parameter empirical process 

WN(t,x) = [Nt](F[ut](x)- F(x)), (t,x) E [0,1] × ~, (1.1) 

where 

1 X 
FN(X)  = N Z I{Xj ~<x} (1.2) 

j : l  

is the empirical distribution function. Assuming that, for some normalizing constants 
dN ~ oo, dN 1WN(t,x) converge weakly in the Skorokhod space D([0, 1] × [ -0% +oo]) 
to some (nontrivial) limit W(t, x), one obtains the convergence of Type I error proba- 
bilities of rejecting the null hypothesis to the probability expressed in terms of the limit 
random field W(t,x) (Propositions 2.1 and 2.2). The same approach applies to test- 
ing converging change-point alternatives introduced in Giraitis and Leipus (1992) for 
linear models, as a substitute for the more usual contiguous alternatives (Proposition 
2.3). Section 3 discusses some nonparametric estimators of the change point 0 itself, 
under the assumptions of Proposition 2.3. Finally, Section 4 discusses the change-point 
problem for long memory moving averages, including fractional ARIMA processes, 
Xj = ~s<<jbj_s~s, j E ~, where {¢s}s~ is an i.i.d, sequence, and the weights by 
decay slowly hyperbolically as j ~ cx~. 

2. Testing the change-point hypotheses 

Let us introduce some notation. Let 0 ~< 0 ~< 1, and FO)(x), F(2)(x) be two distribution 
functions. A random vector X N ~- (~('1 . . . . .  X N )  E 7@(O, FO),F (2)) if 

( X !  '), I<~j<~[NO], x j = / ~  , (2.1) 2), [NO] < j<~N, 

where (x(i))j~_ =- X (i) is a strictly stationary process with P{X)i)<<.x} = F(i)(x), 
i = 1,2. Here, ku = [NO] + 1 is the change-point of the marginal distribution of  the 
sample X1,...,XN. Note that no assumptions about the joint distribution of the two 
processes X (1), X (2) are made. The class ~N(F) =: ~UN(1,F) refers to all vectors 
(X1,...,XN) having the same marginal distribution F. 
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We consider the weak convergence, denoted by 2 ,  of random elements taking 

values in the space D(1), I = [0, 1] × [ - c ~ , + w ]  equipped with the Skorokhod .IL 

topology (see Bickel and Wichura, 1971 ). Write ==~ for the weak convergence of finite 

dimensional distributions, and 2 for the equality in distribution of random elements 
with values in a measurable space :~. 

2.1. Testing the null hypothesis when F(x)  is known 

Consider the pair (H0, H1 ) of alternative hypotheses about the distribution of a given 

random sample XN = (X1 . . . . .  XN ): 

H 0 :  { X N  E ~ N ( F ) } ,  

H1 : {30 E (0,1) 3F1 : # F  such that XN E ~N(O,F ,  F I ) } .  

The testing procedure for the pair (H0, 1-I1) is based on the process 

W~(t,x) = (N - [Nt])(F~_tNtl(x ) - -F(x)) ,  

where 
N 

, 1 
FN-k(x ) - -  U - k  Z l{Yj~<x} 

j=k+ 1 

is the empirical distribution function based on the partial sample Xk+l . . . . .  XN. Namely, 
we reject the null hypothesis H0 when 

T N := dN 1 sup IW~v(t,x)l > c, 
(t,x)El 

where c, dN --+ ~3 are some constants.  

Proposition 2.1. Let the hypothesis H0 be true, i.e. (X1 . . . . .  XN) = X~ is a sam- 
ple from a strictly stationary process X,  with known marginal distribution Junction 
F(x)  = P{Xo <~x}. Let, moreover, 

dN I WN(t ,x  ) D(~ W ( t , x ) .  (2.2)  

Then for a.e. c > 0 

lim P{TN > c} ----P{ sup ]W(t,x)[ > c}. (2.3) 
N-~cx~ (t,x)Ct 

Proof. Follows from stationarity of  X and of the increments W N ( t , x ) -  WN(S,X), 
the convergence (2.2), and the fact that sup1 ]w(t,x)t is a continuous functional on 
D(1). 

Remark  2.1. It is well-known (Lamperti, 1962) that the normalizing constants are 
necessarily of the form d N = N~L(N), with some • > 0 and L(.) a slowly vary- 
ing function. The limit random field W(t, x) extends to a random element on I ~  - 
[0, +cxD) × [-cx~, +~x~], denoted by the same letter, and taking values in the Skorokhod 
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space D(lo~), which is ~-self-similar, i.e. for any a > 0 

W(at, x) D(~ )a~ W(t, x). 

Remark 2.2. For independent observations )(1 . . . . .  XN the convergence (2.2) is well- 
known and the limit process is the Kiefer process W(t, x) = K(t, x), i.e. a zero mean 
Gaussian process with the covariance 

EK( t, x)K( t',x') = t A t' (F(x A x') -- F(x )F(x')). (2.4) 

Berkes and Philipp (1977) and others obtained the convergence (2.2) for weakly de- 
pendent stationary processes Xj, j  c 7/ satisfying certain mixing conditions, to a zero 
mean Gaussian field W(t, x) with the covariance 

EW( t, x)W( t',x') = t A t tr(x,x'), (2.5) 

where 

u(x,x') = Z (P{X0 <~x, Xj <~x'} - P{Xo <~x}P{Xj ~x'}) .  (2.6) 
J 

Remark 2.3. The empirical process of long-memory sequences of the form Xj ---- 
H ( ~ ) ,  j E 77, where H(.)  is a (measurable) function, and Yi, J E Y is a Gaussian 
process with zero mean and slowly decreasing covariance function: Cov(Y0, Yi) 
j -D ( j  __~ cxD, D E (0, 1)), was studied in Dehling and Yaqqu (1989). Further examples 
of the empirical process' convergence (2.2) are discussed in Section 4. Apparently, 
at the present time the change-point problem provides the most important statistical 
application of such a convergence. 

2.2. Testing the null hypothesis when F(x) is unknown 

Consider now the pair (I~0, Iql ) of alternative hypotheses defined by 

I~0 " {3F such that XN E 7~N(F)}, 

Iql "{30 E (0, 1) 3F1 # F2 such that XN E tltN(O, F I , F 2 ) } .  

To test (I~0,I~l), we use the statistic 

TN :=dN 1 sup [VN(t,x)[, 
(t,x)EI 

where 
[Nt](N - [Nt]) 

Vu(t,x) = N (F[Nt](x) -- F~V_[Nt](X)). (2.7) 

Proposition 2.2. Assume the hypothesis (-Io is true, and the converoence (2.2) holds 
again. Then for a.e. c > 0 

lim P{f'U > c} = P {  sup [ W ( t , x ) -  tW(1,x)[ > c}. (2.8) 
N---+oo (t,x)El 
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Proof. Write 

VN(t,x) -- N -x[Nt] Wx(t ,X)  -- ~ W?v(t,x) 

= (1 - tN)WN(t ,x)  -- tN(WN(1,X) -- WN(t ,x))  = WN(t,x)  -- t.vWA,'(1,x), 

where tN = [Nt]/N --+ t. Hence, the convergence (2.8) follows by the same argument 
as in the previous proposition. [] 

2.3. Testing convergin9 alternatives 

The asymptotics of Type II error probability is usually discussed in the context of 
contiguous models (contiguous alternatives). For K-S type statistics (2.3), (2.6), and in- 
dependent observations Xl . . . . .  XN, the limits of the probabilities P{ TN > c }, P { T N > c } 

under contiguous alternatives were studied by Leipus (1988), Szyszkowicz (1994), 
Cs6rg6 and Szyszkowicz (1994). Khmaladze and Parjanadze (1986), Pardzhanadze 
and Khmaladze (1986) considered asymptotically most powerful rank tests based on 
sequential ranks and obtained the weak limit under contiguous alternatives for the 
uniform empirical process simultaneously with the limits of the corresponding empirical 
rank processes. 

However, the contiguity assumption (on the observations before and after the change 
point) is rather difficult to verify for certain dependent models, in particular, for the lin- 
ear model studied in Section 4. Therefore, we introduce a related notion of converging 

alternatives, which is formulated in terms of the joint asymptotics of the corresponding 
pair of empirical processes, and which was first studied in Giraitis and Leipus (1992) 
in the context of the empirical spectral process of a moving average process. 

Let .~'2 be a class of  bivariate strictly stationary processes (X(1),X 12)) = 
(X)I) ,X)2))/e~. Write ~1 = {X : ~X'such that ( X , X ' )  E .~'2} for the correspond- 
ing class of univariate stationary processes. Introduce the class TN(O;:Y2) of all vec- 
tors XN = (Xj . . . . .  XN) such that (2.1) holds with (X(I ) ,x  (z)) c ~2 and F(~)(x) = 
P { X )  i) ~<x}, i = 1,2. Let TN(Y'I  ) ~ TN(1 ; ~2)  be defined analogously. 

~r(N) and the alternative distribution In the following definition, the class '~2 ~ J~2 
functions F(i)(x) = F(i'N)(x), i = 1,2 depend on the sample size N. Put 

h~(N) tpU (O~(.(1N) ) ) ' 0 { X N  ~ 

~ ~ ( I v )  HI N) = {30 E (0, 1) such that XN ~ T.v(0;.T 2 )} 

and 
iAy(i,N)[t ~. v ( i , N ) ~  ~ (i,N) w(i 'N)( t ,x)  ~ "N , . . . . .  ) [Nt](F[N,] (x) - F(i'N)(x)), 

i : 1,2, where 

N 
1 

j--1 

is the corresponding empirical distribution function. 
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t.~.;(N ) ¢;(N).  Definition 2.1. The pair ~tl 0 , H 1 ) of alternative hypotheses is said to be converg- 
ing if there exist dN ---+ ~ ,  a real function G(x), x E ~ from the Skorokhod space 
D[-cx~,+cxz], and a random field (W(l)(t,x),W(2)(t,x)),(t,x) E I such that, for any 
pair (XO),X (2)) E ~r~N), 

dNl(W~ukU)(t, x), W(N2'N)(t, X)) ~ (W(1)(t, x), w(e)(t, x)) (2.9) 

and 

lim dNIN(F(I'N)(x) -- F (2 'N) (x ) )  = G ( x )  (in D [ - c ¢ , + c ¢ ] ) ,  (2.10) 
N--+cx~ 

Denote I-](iN)(0) the alternative I~(1 N) when 0 E (0, 1) is fixed. 

Proposition 2.3. Assume the pair (I~U), "~(u)" H 1 ) is converyin9 and 0 E (0,1). Then 
under the alternative (-I(ff)(O) for a.e. c > 0 

lim P{TN > c} = P {  sup ]Z(t,x)l > c}, (2.11) 
N----~c~ (t,x)Gl 

where 

Z(t,x) (1 

- t ( W d ) ( t  V O,x) - w(Z)(t V O,x)  A- W(2)(1,x) 

-W(1)(t, x)) + (t A 0 -- tO)G(x). (2.12) 

Proof. Similar to the proof of Proposition 2.2, write 

V~(t,x) = (1 - t~ )(W~'u)(t  A O, x) -- VC~(2"N)(t A O, x) + V¢~ ~'u)(t,x)) 

q-(tN A ON -- t N O N ) N ( F ( I ' N ) ( x )  - - F ( 2 ' N ) ( x ) ) .  (2.13) 

Hence, the convergence (2.11 ) follows from Definition 2.1, similarly as in Propositions 
2.1 and 2.2, [] 

Remark 2.4. Independent observations satisfy the conditions of Proposition 2.3 (Def- 
inition 1.1) i f  F ( i ' N ) ( x )  weakly converge to a distribution function F(x), i = 1,2, and 

lim v/N(F(I'N)(x) -- F ( 2 ' N ) ( x ) )  = G ( x )  
N---~ cxD 

at each continuity point of G(x), where G(x) has bounded variation. The limit empirical 
process in (2.9) (with d N =  v / N  ) is (W(1)(t,x),W(Z)(t,x)) = (KO)(t,x),K(Z)(t,x)), 
where K(i)(t, x), i = 1,2 are independent Kiefer processes with the same covariance 
(2.4). Converging alternatives for moving-average observation processes are discussed 
in Section 4. 
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Remark 2.5. In a similar way, one can discuss testing change-point alternatives, using 
the empirical characteristic function 

CN(Z ) = eiZXdFN(X) = ~ ~ e iZx'. 
]-1 

The natural counterparts of the statistics WN(t,x), W~(t, x), Vu(t,x) are their Fourier- 
Stieltjes transforms; in particular, the null-hypothesis I~1 can be tested using 

UN(t,z) : ) f  e i zXdVx( t , x )  : [Nt](N - [Nt])  (C{Nt](z ) , N - CN-lmtl(z ))' 

where C;v_k(z ) = (N - k)  -1 ~ N k ~  I eizXj" The convergence of the one-parameter pro- 
cess Ux(1,z)  for independent and weakly dependent observations was discussed in 
Feuerverger and Mureika (1977), Cs6rg6 (1981) and Feuerverger (1990). Beran and 
Ghosh (1990, 1991) consider the above convergence for strongly dependent Gaussian 
variables. 

3. Estimation of the change point 

In order to be able to consistently estimate the change point kN = [NO] + 1, or 
the parameter 0, we need that the alternative distribution functions F(i 'N)(x) ,  i = 1,2 

(i,N) converge more slowly than the empirical processes W~; (t,x), i = 1,2. This leads to 
the following 

Definition 3.1. A pair (I-]~ N), I~(1N)) of converging alternatives is said slowly converging 
if the convergence (2.9), (2.10) holds with (W(l)( t ,x) ,  W ( 2 ) ( t , x ) ) : - - 0  and G ( x ) ~  O. 

We consider two types of estimators of 0 based on the uniform distance and the 
L2-distance between distribution functions, respectively. Put 

IlV~ll,~(t) = sup IVN(t,x)[ (3.1) 
x 

and 

ON.~ = argmax{[IVN[l~(t) " t E [0, 1]}, (3.2) 

where VN(t,x) is defined by (2.7). Also, let 

/ i  vNIIoo(6,<,oo) 
ON, o~(1 --ON, go) (3.3) 

.~(N) . - ; (N) .  
Theorem 3.1. Let the pair ( n  o , ri 1 ) be slowly converging. Then under the hypoth- 

esis I~(1 N) for  any 0 C (0, 1 ) 

(Om, oo,dml~N, oo) ~ (0, llGiloo), N ~  go, (3.4) 

where [IGItoo = supx IG(x)l . 
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Proof. Denote G(t, x) = (t A 0 - tO)G(x), then 

sup [G(t,x)[ = 0(1 - 0)[[G[[oo. (3.5) 
(t,x)EI 

From the proof of Proposition 2.3, u n d e r  H~ N), we have 

dN 1VN(t,x) D(~ G(t, x), 

which implies 

d N' sup ]VN(t,x)[ =-- dNlllVuIloo('ON, oo) ~ 0 ( 1 -  0)llGIIoo- (3.6) 
(t,x)EI 

Moreover, using the representation (2.13) and the convergence d u ~ suP(t,x)~ ] WN 0'u)(t, X)[ 
==* 0, we obtain 

"C(ON, oo , O)NdN 1 [IF (I'N) - F(2'N)l]oo ~ 0(1 -- 0)[[G[[~ 

o r  

"~(~ON, c~,O ) ~ 0 ( 1 -  0) --v(0,0), 

where fit, 0) := t A 0 -- tO. Consequently, by the inequality z(0, 0) - v(t, 0) ~> It - 0[((1 - 
0) A 0), t E (0, 1 ) we obtain 

0U, oo ~ 0. (3.7) 

Now, (3.4) follows from (3.6), (3.7). [] 

Apart from the Kolmogorov-Smimov-type statistics TN, TN, other statistics can be 
applied in the change-point problem, in particular the Cram6r-von Mises-type statistics 
based on the L2-distance, such as 

sup f vZ(t, x)dx (3.8) 
0~<t~<l JR 

o r  

The asymptotics of the integrals (3.8), (3.9) under the hypothesis of Sect. 2 can be 
obtained from Propositions 2.1-2.3. 

Consider estimation of 0 and of the distance [[F (1,N) -F(2'N)[]2 := (f~ [F(I'N)(x)- 
F(2,N)(x)[2dx) z/2 using the statistic (3.8). Put 

[[gN[]2(t) = (jfR v2 ( t , x )dx )  l/2 
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and define 

ON,2 = argmax{llVNll2(t) : t C [0, 1]}, 

]IVNIIZ(~ON,2) 
PN,2  - -  A 

ON,2 ( 1 - ~OU, 2 )" 

Theorem 3.2. Let the assumptions o f  Theorem 3.1 be satisfied, and, moreover, 
dN1NI] F(NA) - F(N'2)]I2 --~ IjGII2. Then 

(ON,2, dNIpN,2) ~ ( 0 , [ I G I [ 2 )  , U - - ,  o c .  

Proof. The convergence (3.6) implies 

d ;  2 sup [ V2( t , x )dx  = dN2tIVNII~('ON,2) ~ 02(1 --0)2]]GII~, 
tE[0,1] J 

from which the c o n v e r g e n c e s  ON,2 ~ 0 and d~l~u,2 ~ IlG]I2 follow, similarly as in 
the proof of  Theorem 3.1. [] 

Remark 3.1. In the case of  independent observations, Dfimbgen (1991) studied the 
estimator 0N, D which maximizes 

( 1 ) 
1 Z 6x, N - [ N t J  Z 6x, , SN [Nt] I <. j <~ [Nt] [Nt] < j  ~< N 

where SN(') is a seminorm on the N-dimensional Euclidean space and 6x is Dirac's 
measure. In particular, he showed that if 7N > 0 satisfy SN(F (I'N) --F(2'N))>/Co)'N 1 
for some Co > 0 and all sufficiently large N and 72 = o( N/ log log N ), then 

ON, O = 0 ~- Op(72 / N ) .  

The estimators of Carlstein (1988) and Darkhovsky (1976) are special cases of  Diimb- 
gen's estimator ON, D. See also Carlstein and Lele (1993) and Ferger (1994b) for recent 
results on this estimator. 

Remark 3.2. Ferger and Stute (1992) studied an U-statistic-type estimator ON, L.' for the 
parameter 0, when the observations are independent and the alternatives are fixed, i.e. 
F (i'N) = F (i), i = 1,2 for all N, and showed that ON, U -  0 = O ( l n N / N )  with probability 
1. In the recent paper, Ferger (1994a) obtained the asymptotic distribution of a related 
class of  max-type estimators of  0 when the alternatives approach each other in a certain 
sense. 
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4. The empirical process of long-memory sequences 

Conditions of Propositions 2.1-2.3 are well-studied for independent or, at least what 
concerns the basic convergence (2.2), for weakly dependent observations ~., j E ~. In 
recent years, there is a considerable interest in statistical inference for long-memory 
time series, including the behavior of empirical processes (Beran, 1992; Dehling and 
Taqqu, 1989). One of the basic models is the moving-average process 

Xj  : ~ bj-~,~s, (4.1) 
s<~ j 

where bs, s E 7/+ = {0,1 .... } are (non-random) weights such that ~ b  2 < cx~, and 
~s, s C ~_ is a (noise) sequence of i.i.d, random variables, not necessarily Gaussian, 
with zero mean and variance 1. The long-memory condition is usually introduced by 
requiring that the weights decay slowly hyperbolically: 

bs = L(s )  S -(l+D)/2, (4.2) 

where 0 < D < 1, and L(.) is a slowly varying function. Condition (4.2) guarantees 
the corresponding hyperbolic decay condition 

Cov(X0,Xj) = l~ ( j ) j  -D (4.3) 

of the covariance, with a slowly varying function [ ( j )  ~ d L 2 ( j ) ,  where 
d = f0 ~ (u(1 + u)) -O+D)/2 du. The series (4.1), (4.2) include f rac t ional  A R I M A  mod- 
els defined by 

• (B)(1 - a)~/2Xj  = ~ ( B ) ~ j ,  

where BXj = Xj_, is the backshift operator, ( 1 - B )  D/2 = ~ 0  (~2 ) ( -B)  k is the frac- 
tional difference operator, and O(z), ~(z)  are polynomials satisfying usual conditions 
(Granger and Joyeux, 1980; Hosking, 1981). 

Statistical analysis of (non-Gaussian) long-memory series (4.1), (4.2) is not easy 
since the usual techniques of Hermite expansions do not apply. Similar to the Gaussian 
case, even quadratic statistics may tend to a non-Gaussian limit, and the proofs of the 
convergence often are technically complicated, see e.g. Giraitis and Surgailis (1990). 
The first result on the convergence of the empirical process was recently obtained in 
Giraitis and Surgailis (1994) (see also Giraitis, et al., 1994). Introduce the f rac t ional  

Brownian  mot ion  Zn( t ) ,  t E [0, l] (0 < D < 2), which is a (a.s. continuous) Gaussian 
process with zero mean and the covariance 

E Z n ( t ) Z ~ ( s )  = ½ (Jt[ 2-n + Isl 2 -n  - It - s[2-n). 

The f rac t iona l  Brownian  bridge Z(DO)(t), t C [0, 1] can be defined by 

Z(DO)(t) = ZD(t)  -- tZD(1). 
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Put 

d N =  dU2L(N)N I-D/2. (4.4) 

Theorem 4.1 (Giraitis and Surgailis, 1994). Let 0 < D < 1, and let Jor the moving- 
average process Xj of  (4.1), (4.2), the following conditions be satisfied: 

IEe~"¢° I <~ C(1 + lul) ? ( ~ c  < ~ ,  37 > o) (4.5) 

and 

E]~ol m < oo (Vm > 0). (4.6) 

Then 

d~ lWN(t,x) D(~ c~2 f (x)ZD(t) ,  (4.7) 

where f ( x )  = F'(x) = dP{Xj<~x}/dx is' the marginal probability density, Zr)(t), 
t E [0, 1 ] is a fractional Brownian motion, and 

'fo' CD= fo0 i t _ s l - D d t d s = 2 ( l _ D ) - l ( 2 _ D )  I. 

Remark 4.1. The limit random field W(t, x) = c~'2.f(x)ZD(t) in Theorem 4.1 coincides 
with the corresponding limit in Dehling and Taqqu (1989), Theorem 1.1 for Gaussian 
Xj , j  C 2. Condition (4.6) can be relaxed in the sense that moments of  40 of a suffi- 
ciently high order may be infinite. The proof of Theorem 4.1 is based on the following 

"weak uniform reduction principle" (cf. Theorem 3.1 of Dehling and Taqqu (1989)): 
there are constants C(6),y > 0 such that for any 0 < ~ < 1 

P{supdNllWN(t,x) + f(x)S[~q > 3} <~ C(6)N ;', (4.8) 
l 

where 

N 

SN : ~ X j .  (4.9) 
j-0 

Fix 0 < D < 1 and a slowly varying function L0(.), and consider the class :~'1 = 
.~'l(D, Lo(.)) of all moving-average stationary processes X ~ (Xj ) j~  of (4.1), (4.2) 
with 

lim L( j ) /Lo ( j )=  1, 
j--~OO 

and satisfying the conditions of  Theorem 4.1. From Proposition 2.2 and Theorem 4.1 
it follows 

Corollary 4.1. Let the hypothesis ~Io = FIo( f l ) be true, i.e. (Xl . . . . .  XN ) is' a sample 
from a stationary moving average process X ~ .~,'l. Then for any c > 0 

P{7Z N > C} =P{dN 1 sup [VN(t,x)l > c} = P {  sup IZ °)(t)l > c,/(c)S21[fll~)}. 
(t,x)Cl tC[0,1] 
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There are several ways one can discuss the change-point problem for converging 
alternatives about the moving average model, by specifying an appropriate class y,~N). 
One possibility is as follows. Fix 0 < D < 1, and a slowly varying function L(.). 
Put bj = L(j)j-(I+D)/2, j E ~+. Let f~N) = f~N)(D,L ) be the class of all pairs 
(XO'N),X (2'N)) of moving averages of the form 

X) i'N)= Z b ~  i'-N)~'' i=  1,2, (4.10) 
s~< j 

satisfying the following four conditions: 
(a. 1) by 'N) = L(i'N)(j)j -(I+D)/2, where L(i'N)(.) varies slowly at infinity; 

(a.2) b~. i'N) = bj(1 + o(1)) as N ~ cxD uniformly in j~>0; 
(a.3) ~s, s E 7/ are i.i.d, and satisfy conditions (4.5), (4.6) of Theorem 4.1; 
(a.4) l i m N ~  dN1N(f(i'N)(x)- f (x))  = g(i)(x) uniformly on compacts and in Ll(~),  

where f(i'N)(x)= dF(i'N)(x)/dx is the marginal density of X(i'N)(j) (4.10), and 
f ( x )  is the density of Xj = ~s<~ j bj-s~s. 

Let (I~N),I~(1N)) be the pair of alternative hypotheses defined in Section 2, and corre- 

sponding to the class ~ 2 )  = f~N)(D,L). In particular, the alternative ~I(IN)(o) is 

{ ~ /~(I'N)y I~j<~[NO], Z.~ ~j-s ~s, 
s<~ j 

Xj = ~--"/,(2,N)y [NO] < j~N.  W-s ~s, 
s<~j 

Theorem 4.2. The pair (H~N),(-I(1N)) is converging in the sense of Definition 2.1, with 
dN given by (4.4), 

WO)(t,x) = W(2)(t,x)= CID/: f(X)ZD(t), i =  1,2, 

ZD(t) being the fractional Brownian motion, and 

f G(x) = (g(1)(y) - g(2)(y))dy. 
O<3 

Proof. From the assumptions (a.1)-(a.3) analogously as in the proof of Theorem 4.1 
(see Giraitis and Surgailis, 1994) one obtains the '"weak uniform reduction principle": 

P{supd~Iw~'N)(t,x)+ f(i'N)(x)S~i~)[ > 6} ~ C(6)N-', i=  1,2, 
1 

where the constants C(~),7 > 0 do not depend on N. Hence, the convergence (2.9) 
follows from (a.4) and 

dNlk~,[Nt]{ ¢(1,N),o[Nt]V(2,N)]/ D[~] clD/2(ZD(t), ZD(t)) .  (4.11 ) 

With (a.1)-(a.3) in mind, the last convergence is a rather simple fact; see Giraitis 
and Surgailis (1994), or Taqqu (1975). In particular, the asymptotic normality of finite 
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d i m e n s i o n a l  d i s t r i b u t i o n s  c a n  b e  d i r e c t l y  ve r i f i ed  b y  c o m p u t i n g  c u m u l a n t s  o f  t he  lef t -  

h a n d  s ide  o f  (4 .11 ) .  F ina l ly ,  ( 2 . 1 0 )  o b v i o u s l y  f o l l o w s  f r o m  (a .4 ) .  

C o r o l l a r y  4 .2 ,  Under  the  alternative I~(l N) (0  < 0 < l ) Jo r  a n y  c > 0 

l im  P{7"N > C} : P {  sup  Ic~"2f (x )Z~° l ( t )  + (t  A 0 - tO)G(x)  I > c}.  
N ~¢~ (t,x)El 
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